

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Influence of Application Volume and Droplet Size on Spray Penetration into Peanut Canopy

Madan Sapkota

MS Student

Department of Crop and Soil Sciences

University of Georgia

Co-Authors: S.S. Virk, E.P. Prostko, R.C. Kemerait, G.C. Rains

54th APRES Annual Meeting, Omni Las Colinas Hotel, Dallas Texas

Introduction

- Peanut production in Southeast United States greatly affected by diseases and pests
- Heavily rely on use of pesticides
- Timely and effective pesticide application is critical

Late Leaf Spot in Peanut

Thrips attack in Peanut

Palmer Amaranth in Peanut

Droplet Size

Spray Application Parameters

Nozzle Selection

Introduction

TTI

Category	Symbol and color code	Approximate VMD	
		(μm)	
Extremely fine	XF	<60	
Very fine	VF	61-144	
Fine	F	145-235	
Medium	М	236-340	
Coarse	С	341-403	
Very coarse	VC	404-502	
Extremely coarse	ХС	203-665	
Ultra coarse		>665	

GPA / 18" 5 mph mph mph mph mph mph mph mph 52 4.0 7.3 4.5 3.6 3.0 2.6 8.6 6.1 5.4 4.8 4.3 3.6 3.1 7.2 7.1 5.0 9.9 6.2 5.5 4.1 8.3 3.5 6.2 11.2 8.0 7.0 5.6 9.4 4.7 4.0 11.9 8.5 7.4 6.6 5.9 9.9 5.0 4.2 13.2 11.0 9.4 8.3 7.3 5.5 6.6 4.7 9.9 8.7 7.7 6.9 13.9 11.6 5.8 5.0 15.2 12.7 10.8 9.5 8.4 7.6 6.3 5.4 9.2 7.7 6.6 5.8 5.1 4.6 3.9 3.3

Ground Speed

Application Volume

Recent Trends - Pesticide Application in Peanut

Results

Lower Application Volumes – trend towards using lower volumes to be more efficient and cover more acres

Methods

Introduction

Larger Droplets – increased use of nozzles that produce larger droplets due to spray drift concerns

Future Research

Summary

Objective

To evaluate the influence of application Volume and droplet size on spray penetration into peanut canopy

Site and Planting Information

Study Year: 2021
Location: Lang Farm (Tifton, GA)
Field Conditions: Conventional, Irrigated
Cultivar: GA-06G
Seeding Rate: 87,500 seeds/ac
Planting Date: May 25, 2021

Management: As per recommendations outlined in UGA Peanut Production Guide

(UGA Tifton Campus, Tift County, Southwest GA)

Study Treatments

Results

Three Spray Volumes:

Methods

(by varying nozzle size)

• 10 GPA

Introduction

- 15 GPA
- 20 GPA

Three Droplet Sizes:

(by varying nozzle type)

Summary

- Medium
- Very Coarse
- Ultra Coarse

Future Research

Air Induction (AIXR)

Turbo TeeJet Induction (TTI)

Plot Size: 4-row plots (12 ft. x 80 ft.)

Sprayer: 6-row sprayer with a rate controller

Design: Randomized Complete Block (3 replications)

Fungicidal Application: Total six fungicide applications

- Chlorothalonil @16 oz/ac at 47, 62, 75, 92 & 122 DAP
- Tebuconazole @7.2 oz/ac at 62, 75, 92, 106 DAP

Data Collection (2021)

Introduction

- Coverage and canopy penetration
 - o Water sensitive papers
 - o Top, middle & bottom of the canopy

Methods

Results

- Canopy measurements & leaf area index (LAI)
 LAI using ceptometer (AccuPAR LP-80)
- Disease rating (Leaf spot at 90 and 120 DAP and White Mold at 120 DAP)
- Yield (harvesting center two rows for each plot)

Summary

Data Analysis (2021)

Analysed Area	23.91 cm ²	Applied Volume on 0.09 μl/cm² Paper		Quantity of Drops	566
Diameter Variation Coefficient	60.52%	VMD	272.73 μm	D0.9	398.38 μm
Largest Drop	450.20 μm	Average Diameter	146.56 μm	Covered Area	2.34%
Density	23.67 drops/cm ²	Relative Amplitude 0.81		Drift Potential	2.18%
D0.1	176.72 μm	NMD	146.56 μm	Smallest Drop	24.34 µm
Droplet Size Classification	Medium				

Data were analyzed using analysis of variance and means comparison using student t-test using $p \le 0.10$ in JMP Pro 16 (SAS Institute, NC).

Canopy Measurements (2021)

Introduction

Date	DAP*	Height	Width	Area	LAI*
		(cm)	(Cm)	(Cm²)	
July 11	47	23.9 d	42.9 d	1031.2 d	0.56 c
July 26	62	34.7 c	68.0 c	2386.6 c	0.82 c
Aug. 25	92	45.8 a	83.5 a	3833.6 a	4.45 a
Sept. 24	122	41.7 b	82.0 b	3415.2 b	3.50 b

*DAP means days after planting and LAI means Leaf Area Index.

92 DAP

Spray Coverage (2021)

Summary

Future Research

Results

Introduction

Methods

Main & Interaction Effects	47 DAP	62 DAP	92 DAP	122 DAP
Volume (GPA)	0.3887	<.0001*	<.0001*	<.0001*
Droplet size	0.5862	<.0001*	<.0001*	<.0001*
Position in canopy	<.0001*	<.0001*	<.0001*	<.0001*
Volume (GPA)*Droplet size	0.0117*	0.0435*	0.025*	0.001*
Volume (GPA)*Position in canopy	0.9896	0.0009*	<.0001*	0.0013*
Droplet size*Position in canopy	0.8683	0.0259*	<.0001*	<.0001*
Volume (GPA)*Droplet size*Position in canopy	0.6083	0.6791	0.7961	0.651

Application Volume x Position within Canopy

10 GPA 15 GPA 20 GPA

M VC UC

- Both application volume and droplet size had a significant interaction with position within the canopy
 - Spray Volume x Position: Higher volume increased spray penetration up to middle of the canopy.
 - Droplet Size x Position: Both medium and very coarse droplet provided comparable coverage in the middle.

Future Research

Evaluating the influence of these applications parameters on spray coverage, penetration and efficacy in fields with high disease/pest pressure in the season.

Acknowledgments

Georgia Peanut Commission

