

Potential of UAS Multispectral Imagery for Predicting Yield Determining Physiological Parameters of Cotton

Amrit Pokhrel

MS Student Graduate Research Assistant Department of Crop and Soil Sciences University of Georgia Tifton Campus

15th International Conference on Precision Agriculture June 26–29, 2022 Minneapolis, Minnesota, United States

Introduction

Unmanned Aerial Systems (UAS) application in agriculture:

- Mapping field variability
- Crop species classification
- Growth monitoring
- Stress detection
- Crop phenotyping
- Yield prediction

Importance of Cotton

 Cotton has global importance as a commercial crop and substantial contribution to clothing and textile industry.

Among top 3 cotton-producing countries
 Contribute 35% of global cotton export (USDA 2021)

Yield Function

Yield = IPAR*RUE*HI

IPAR

- Intercepted Photosynthetically Active Radiation
- MJ m⁻²

- Radiation Use Efficiency
- g MJ⁻¹

HI

- Harvest
 Index
- Ratio

Rationale

 Reports on relationship of multispectral derived vegetation indices with IPAR, RUE and HI are limited.

Objective

Predict IPAR and RUE from UAS multispectral imagery and derived vegetation indices

Experimental Layout

Cultivar:

DP 1646

Nitrogen Treatments:

- 0 kg N ha⁻¹
- 44 kg N ha⁻¹
- 89 kg N ha⁻¹
- 134 kg N ha⁻¹
- 179 kg N ha⁻¹

Design:

- RCBD
- 5 replications
- 6 row plots * 15 m in length

Measurements

- Multispectral imagery using DJI Inspire 2 and MicaSense RedeEdge[™] Camera,
- RGB imagery using DJI Phantom 4 Pro V2.0

- Light Interception using ceptometer
- In season biomass collection
- End of season harvest index
- Lint yield

Image Processing and Analysis

 <u>Image Processing</u>: Pix4D[®] software was used to obtain mosaic images combining imagery for each sample date.

 <u>Imagery Analysis:</u> Arc Map 10.7.1[®] was used to extract reflectance index for vegetation indices (VI's) computation.

Vegetation Indices

Abbreviated VI's	Nomenclature	Formula
ExG	Excessive Greenness	$2 \times G - R - B$
NDVI	Normalized Difference Vegetation Index	NIR - R
		$\overline{\text{NIR} + \text{R}}$
ExG*NDVI	ExG multiplied by NDVI (Classification Index)	$(2 \times G - R - B) \left(\frac{NIR - R}{NIR + R} \right)$
GNDVI	Green Normalized Difference Vegetation Index	NIR – G
		$\overline{\text{NIR} + \text{G}}$
NDRE	Normalized Difference Red Edge Index	NIR - RE
		NIR + RE
RVI	Ratio Vegetation Index	NIR
		R
SCCCI	Simplified Canopy Chlorophyll Content Index	NDRE
		NDVI
RE/R	Red edge and Red Ratio	RE
		R
GRVI	Green Ratio Vegetation Index	NIR
		G

Abbreviated VI's	Nomenclature	Formula
VARI	Visible Atmospherically Resistance Index	G - R
		$\overline{G + R - B}$
TCARI	Transformed Chlorophyll Absorption Reflectance Index	$3\left[(\text{RE} - \text{R}) - 0.2(\text{RE} - \text{G}) \times \left(\frac{\text{RE}}{\text{R}}\right)\right]$
OSAVI	Optimized Soil Adjusted Vegetation Index	$(1+1.6)\left(\frac{\text{NIR} - \text{R}}{\text{NIR} + \text{R} + 0.16}\right)$
TCARI/OSAVI	TCARI normalized by OSAVI	TCARI
		OSAVI
SAVI	Soil Adjusted Vegetation Index	(NIR - R)
		$(1+0.5)(\frac{1}{NIR+R+0.5})$
RGBVI	Red Green Blue Vegetation Index	$G - B \times R$
		$\overline{G^2 + (B \times R)}$
RE/G	Red edge and Green Ratio	RE
		G
GRedVI	Green Red Vegetation Index	G - R
		$\overline{G + R}$
WDRVI	Wide Dynamic Range Vegetation Index	$0.2 \times \text{NIR} - \text{R}$
		$\overline{0.2 \times \text{NIR} + \text{R}}$
MSAVI2	Modified Soil Adjusted Vegetation Index	$(2NIR + 1) - \sqrt{(2NIR + 1)^2 - 8(NIR - R)}$
		2
EVI	Enhanced Vegetation Index	$2.5 \times NIR - R$
		$\overline{(NIR + 6 \times R - 7.5 \times B) + 1}$

Results

IPAR vs VI's

Vľ's	R ²
RVI	0.9324
NDRE	0.9158
RE/R	0.9121
NDVI	0.9104
SCCCI	0.9083
GNDVI	0.8751
GRVI	0.7923

- Ratio VI = NIR/Red
- Power relationship (y = ax^b)
- In(IPAR) = 1.048 + 1.922*ln(RVI)

RUE vs VI's

- Green Ratio VI = NIR/Green
- Linear function (y = ax + b)
- RUE = 0.048*GRVI + 0.3

- Green Normalized Difference VI = NIR - Green/NIR + Green
- Linear function (y = ax + b)
- RUE = 1.67*GNDVI 0.55

Biomass vs VI's

VI's	R ²
GNDVI	0.9297
SCCCI	0.9056
RVI	0.9039
NDRE	0.9016
GRVI	0.8844
NDVI	0.8779
RE/R	0.8678

- GNDVI = NIR-Green/NIR-Green
- Power relationship (y = ax^b)
- In(biomass) = 8.105 + 9.834*ln(GNDVI)

Derived RUE

Biomass = IPAR*RUE

- Predicted IPAR from RVI
- Predicted Biomass from
 GNDVI

- Predicted IPAR from NDRE
- Predicted Biomass from
 GNDVI

Conclusions

- IPAR and cotton biomass were highly corelated with the VI's.
- Almost 50% of the variation in RUE can be explained using VI's- GRVI and GNDVI.
- Multispectral Indices such as GNDVI, RVI, and GRVI could potentially be used to predict yield driving cotton physiological parameters within the growing season.
- Future Works:
 - Estimation of end of season HI
 - Yield prediction model

SCAN ME!! If you want to connect on LinkedIn OR

Email: amritpokhrel@uga.edu

Acknowledgement

Simerjeet Virk, John Snider, George Vellidis, Ved Parkash, and Coleman Byers

Department of Crop and Soil Sciences

Cotton Incorporated