Effectiveness of Different Precision Soil Sampling Strategies for Site-Specific Nutrient Management in Row-Crops

Matthew Tucker

Graduate Research Assistant Department of Crop and Soil Sciences University of Georgia

S. Virk, G. Harris, J. Lessl, M. Levi

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Background

□ Soil spatial variability creates many challenges for row crop production, especially in the Southeastern US.

- Soil texture and color
- Nutrients

- Stand development
- Crop health

Introduction

Precision Soil Sampling

- Capture spatial variability
- Grid soil sampling
- Zone Sampling

□ Variable Rate Applications

- Used to help combat soil nutrient variability
- Aid in site-specific nutrient management
- Only as good as the Rx map

Research Motivation

Growers are interested in making data driven decisions... but they want to be sure they have quality data.

<u>Objective</u>

To evaluate the effectiveness of commonly used precision soil sampling strategies and their influence on the depiction of soil nutrient variability and site-specific nutrient application requirements

Study Locations

7 Locations: 154.77 total hectares

- Tift County (22.46 ha)
- Terrell County (25.50 ha)
- Jefferson County (36.83 ha)
- Colquitt County (37.64 ha)
- Burke County (9.10 ha)
- Sumter County (10.52 ha)
- Worth County (12.72 ha)

Methods and Materials

Grid Sampling

- Grids were created in sizes of 0.4, 1.0, 2.0, 3.0, 4.0 ha
- Point sampling method
- 15.25cm depth
- 12-15 cores

Methods and Materials

Zone Sampling

- MZ's were created using two spatial data layers
 - Electrical Conductivity (EC)
 - Soil Brightness (SBI)
- Soil sampling locations were selected from the locations previously sampled for the grid-based method
- Three % of all soil points were used for each zone method
 - 50% \approx 0.4 ha per sample
 - $25\% \approx 1$ ha per sample
 - $10\% \approx 2$ ha per sample

50% EC (60 samples)

25% EC (30 samples)

10% EC (12 samples)

Data Analysis and GIS

- Interpolation using the Inverse Distance Weighting (IDW) method in SMS Advanced
- Correlation analysis was conducted among the sampling strategies in JMP Pro 15
- Rx maps were created for Lime, Phosphorous, and Potassium in SMS Advanced

<u>Results - Grids</u>

Grid Size		Tifton		Grid Size		Midville		Grid Size		Plains	
ha	рН	Р	к	ha	рН	Р	к	ha	рН	Р	к
0.4	0.96	0,98	0.96	0.4	0.82	0.92	0.98	0.4	0.60	0.66	0.98
1.0	0.92	0.96	0.75	1.0	0.46	0.45	0.74	1.0	0.72	0.47	0.90
2.0	0.77	0.69	0.61	2.0	0.30	-0.22	-0.12	2.0	0.21	0.08	0.67
3.0	0.78	0.90	0.35	3.0	-0.14	0.09	0.65	3.0	0.14	-0.17	0.48
4.0	-0.17	0.89	0.47	4.0	-0.22	0.20	0.61	4.0	-0.25	0.08	0.43

Grid Size	Average (7 Locations)							
ha	рН	Р	к					
0.4	0.87	0.91	0.96					
1.0	0.57	0.73	0.74					
2.0	0.43	0.46	0.48					
3.0	0.22	0.41	0.52					
4.0	-0.09	0.50	0.46					

Application Accuracy

Barts						
		0.4	1	2	3	4
	Over	10	3	1	12	47
рН	Target	87	66	51	46	45
	Under	3	31	48	42	9
	Over	10	12	26	21	22
Р	Target	84	58	49	42	42
	Under	6	30	26	36	35
	Over	9	20	16	7	32
К	Target	85	57	52	49	44
	Under	6	22	32	45	24
Lee						
		0.4	1	2	3	4
	Over	6	9	7	0	4
рН	Target	90	78	81	11	54
	Under	4	13	13	89	42
	Over	1	58	35	54	77
Р	Target	75	36	53	32	20
	Under	23	5	12	14	3
	Over	1	35	19	51	66
К	Target	00	EO	60	20	20
	larget	09	59	00	20	52

Tifto	n							
		0.4	1	2	3	4		
	Over	6	3	9	29	41		
рН	Target	89	85	75	66	34		
	Under	5	13	16	5	24		
	Over	2	12	20	17	7		
Р	Target	92	82	70	74	77		
	Under	6	6	10	9	15		
	Over	5	13	10	30	28		
К	Target	88	72	66	49	54		
	Under	6	14	23	21	18		
Wort	Worth							
		0.4	1	2	3	4		
	Over	5	76	22	8	2/		

		0.4	1	2	3	4
	Over	5	76	22	8	24
рΗ	Target	91	13	77	81	76
	Under	4	9	1	10	0
	Over	3	19	27	21	36
Р	Target	91	68	63	67	57
	Under	6	14	10	12	8
	Over	11	27	32	25	15
К	Target	87	61	39	51	58
	Under	2	12	29	24	27

■Under ■Target ■Over

7.5ac K: 49% off-target

<u>Results – Zones</u>

	Barts						
Zone Method	рН	P	К				
EC 10	0.69	0.35	0.43				
EC 25	0.84	0.83	0.73				
EC 50	0.92	0.93	0.88				
SBI 10	0.75	0.54	0.36				
SBI 25	0.77	0.68	0.70				
SBI 50	0.93	0.89	0.90				

	Tifton						
Zone Method	рН	Р	К				
EC 10	0.89	0.92	0.52				
EC 25	0.87	0.96	0.82				
EC 50	0.94	0.98	0.92				
SBI 10	0.66	0.93	0.68				
SBI 25	0.88	0.94	0.68				
SBI 50	0.95	0.98	0.90				

	Lee						
Zone Method	рН	Р	к				
EC 10	0.31	0.64	0.35				
EC 25	0.44	0.68	0.68				
EC 50	0.54	0.85	0.88				
SBI 10	0.05	0.53	0.61				
SBI 25	0.46	0.70	0.71				
SBI 50	0.71	0.84	0.86				

	Worth							
Zone Method	рН	Р	К					
EC 10	0.66	0.83	0.84					
EC 25	0.82	0.84	0.80					
EC 50	0.94	0.72	0.85					
SBI 10	0.77	-0.36	0.87					
SBI 25	0.80	0.83	0.37					
SBI 50	0.94	0.70	0.43					

Application Accuracy

Barts	5							Tifto	n					1	
		EC 10	EC 25	EC 50	SBI 10	SBI 25	SBI 50			EC 10	EC 25	EC 50	SBI 10	SBI 25	SBI 50
	Over	8	11	9	27	12	9		Over	10	15	8	32	4	5
рН	Target	58	74	83	62	73	86	рН	Target	83	76	85	55	82	88
	Under	35	15	8	11	14	5		Under	8	9	7	13	15	7
	Over	23	21	13	22	30	15		Over	6	9	2	10	3	5
Р	Target	52	64	75	53	59	76	Р	Target	80	88	91	77	87	93
	Under	25	14	12	25	11	9		Under	14	4	7	13	10	2
	Over	29	19	16	30	22	9		Over	17	14	11	20	19	9
К	Target	48	64	76	45	62	79	К	Target	59	76	85	68	70	83
	Under	24	17	8	24	16	12		Under	24	10	4	12	10	8

Lee

Lee							
		EC 10	EC 25	EC 50	SBI 10	SBI 25	SBI 50
	Over	10	10	6	10	12	8
pН	Target	77	81	86	81	86	87
	Under	12	9	8	14	3	5
	Over	41	27	18	18	31	13
Р	Target	50	62	74	55	49	72
	Under	9	11	8	27	20	15
	Over	29	15	10	7	18	14
К	Target	59	76	87	70	73	79
	Under	11	9	3	23	9	7

Application Accuracy

100% 80% 60% 40% 20% 0% EC 10 EC 25 EC 50 SBI 10 SBI 25 SBI 50

Ρ

SBI 50: 7% off-target

SBI 25:13% off-target

SBI 10:23% off-target

<u>Summary</u>

Grid Soil Sampling

- Study suggests as grid size increases the correlation to the "true nutrient variability" and application accuracy decreases.
- On average the 0.4-ha grid size method was found to explain the largest amount of nutrient variability and create the most accurate Rx maps across all locations.

Zone Soil Sampling

- Correlation values for zone sampling methods, in most cases, increase as the amount of sampling points increases.
- Application accuracy increases as the sampling points increase, while it is subjective to the grower to determine the amount of error they are willing to accept. SBI and EC both show potential to be valuable layers in management zone creation.

Future work: Year two of data collection will be focused more on zone delineation and economical analysis to determine what soil sampling method is most cost effective.

: @AgTechMatt