

GEORGIA

Predicting Yield Contributing Physiological Parameters of Cotton using UAV-based Imagery

Amrit Pokhrel*, Simerjeet Virk, John L Snider, George Vellidis, Ved Parkash

Department of Crop and Soil Science, College of Agriculture and Environmental Sciences, University of Georgia Tifton Campus, 2360 Rainwater

Road, Tifton, GA 31793

LinkedIn: Amrit Pokhre

 $R^2 cv = 0.92$

RMSEcv = 0.08

250.1 0.2 0.3 0.4 0.5 0.6 0.5 0.6 0.7 0.8 0.9 1.0 20 15

growth and development.

- It is important to understand the response of underlying physiological parameters (IPAR, RUE, and HI) to yield- altering N application rates.
- However, traditional methods of measuring there physiological parameters are time and labor intensive, and require destructive sampling.

Hypotheses

UAV-based multispectral imagery can be utilized to predict in-season physiological parameters in cotton.

Objectives

To develop and validate models to estimate fraction of IPAR and RUE throughout the season.

Materials and Methods

Location: Lang Rigdon Farm, University of Georgia, Tifton, GA <u>Cultivar:</u> DP 1646 B2XF

Nitrogen treatments for variability: 0, 44, 89, 134, and 179 Kg N ha⁻¹

<u>Measurements and Timeline:</u> 2021 and 2022 growing seasons

Figure 3: Images showing sample aerial image at 56 DAP from 45 m height. RGB imagery for imagery (E), Multispectral Bands: Red each (F), Green (G), Blue (H), NIR (I), Rededge

<u>Physiological measurements:</u> Growing Degree Days (GDDs)=

[Daily avg. Temp.°C*i* – Base Temp. °C]

where *i =1* signifies first day of planting and *n* is each sampling date.

Figure 7: Predicted versus measured plot for RUE values obtained using (a) measured biomass/RVI-based IPAR model, and (b) MSAVI-based biomass model/RVI-based IPAR model. R² and RMSE represent the coefficient of determination and root mean sum square error. The diagonal line is a reference line with a slope equal to 1.

Figure 6: Predicted versus measured fit for the four models that performed the best in predicting (I) IPAR_f, (II) Biomass, and (III) RUE. Blue circles represent the training data, and red traingles represents the validation data. The diagonal line is a reference line with a slope equal to 1. R^2cv and RMSEcv represent the coefficient of determination and root mean sum square error, respectively for cross-validation.

 \Box Fraction of IPAR (IPAR_f)= PAR above – PAR below PAR above \Box RUE (g MJ⁻¹) =

(Dry biomass $_{n}$ – Dry biomass $_{1}$) (Cumulative IPAR $_{n}$ – Cumulative IPAR $_{1}$)

where, dry biomass $_{1}$ and cumulative IPAR $_{1}$ are the reference measurements of the first sampling date, and *n* represents each subsequent sampling date in the season.

<u>Vegetation Indices (VIs)</u>: 20 different VIs were calculated in Microsoft Excel using the extracted reflectance index value from ArcMap for the 5 spectral bands.

Statistical Analysis: Generalized linear regression analysis was performed, where 60% of data was used for training model and remaining 40% for cross-validation.

IPAR_f or above-ground biomass = f (instantaneous VI and GDD)

 $RUE_n = f$ (average of VI within the RUE calculation period)

Models were ranked based on their AICc, and BIC values for training models and R²cv and RMSEcv during cross validation.

Conclusions

IPAR_f −

 \geq Models based on RVI, RECI, NDRE, and SCCCI in integration with GDD were able to predict 93% of variation in IPAR_f. ₱ RUE -

 \succ Average RECI, NIR/G, NDRE, and SCCCI were moderately (R² = 0.40) related with RUE.

 \geq Mechanistic model to predict RUE with actual biomass and RVI-based IPAR estimates had higher R² value (0.84). Biomass-

 \succ Models based on MSAVI, OSAVI, RVI, and SAVI in integration with GDD explained 83–84% of variation in biomass.

