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Vegetation Indices (VIs): 20 different VIs were calculated in Microsoft Excel using the extracted
reflectance index value from ArcMap for the 5 spectral bands.
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Statistical Analysis: Generalized linear regression analysis was performed, where 60% of data
was used for training model and remaining 40% for cross-validation.

IPAR; or above-ground biomass = f (instantaneous VI and GDD)
RUE, = f (average of VI within the RUE calculation period)

Models were ranked based on their AlCc, and BIC values for training models and R?%cv and References
RMSEcv during cross validation. « Monteith, J.L. 1972. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9: 747-766.




