

Irrigation Infrastructure & Emission Devices

Anthony Tasselli Toro Ag - Technical Sales

History of Toro Ag

- Originally built by Reed Irrigation Systems in 1972
- Acquired by James Hardie in 1978
- Acquired by Toro in 1995
- Since those acquisitions, most of our growth has come from products developed by Toro
 - Aqua-Traxx Azul & FlowControl
 - Blueline

TORO.

THE TORO COMPANY

- Greenhouse products
- Disc filters
- Buyout relationships for allied products
- The Toro Company celebrated it's 100 year centennial in 2014
- Toro Micro Irrigation changed name to Toro Ag in 2017

Drip Irrigation Products

- Emission Devices
 - Dripline with emitters built in
 - Drip tape
 - Drip emitters on-line with polyethylene tubing
 - Micro-sprinklers / jets
- Water distribution tubing
 - Oval Hose
 - Lay Flat
 - Micro Tubing
- Accessories
 - Filters
 - Automation/Controllers
 - Valves
 - Fittings

Drip Tape – Subsurface Drip Irrigat

Typical Drip System Components

Essential Components

- Water source
- Pipeline
- Filter
- Control Valve
- Air/Vacuum Relief
- Emission Devices

<u>Supplemental Components – Enhance performance & improve functionality</u>

- Pressure Regulation
- Chemical Injection Equipment
- Flow meter(s)
- Pressure Gauges

- Solenoid Valves
- Automated control system
- Flush Valves/Flushing Manifolds

Design Considerations

A balance of properly sized components & cost saving measures

- Intended Use
 - Crop(s)
 - Life Expectancy
- Field conditions
 - Water availability
 - Soil types & characteristics
 - Crop water requirements
- Type and Size
 - Pump
 - Pipe
 - Valves
 - Filtration
 - Emission devices

Intended Use

Permanent Installations

- Emitter line
- Poly hose with external emitters
- Micro Sprinklers/ Jets/ Spray stakes
- SDI

Annual Installations

- Drip Tape
- Lay Flat hose for mainlines, submains, and manifolds
- Oval Hose/Poly Hose for distribution manifolds

Mobile Infrastructure

- Trailer-mounted pumps
- Trailer-mounted filters
- Skid-mount injection sleds
- Lay-flat mainline/manifolds
- Aluminum mainline

Permanent Infrastructure

Wells

-Wet-well / Sumps
- Canned Subs
- Line shaft turbines

Reservoir- Surface Pump
Filter Stations
Chemigation Sheds
Buried Mainlines

Permanent Installations

TORO

THE TORO COMPANY

- Grapes
- Blueberries
- Tree Nuts
- Apples
- Hops
- Peaches
- Plums
- Cherries
- Raspberries
- Apples

Nursery

TORO Annual Installations

- Strawberries
- Tomatoes
- Peppers
- Lettuce
- Corn
- Onions
- Potatoes
- Cucumbers
- Squash
- Melons
- Sweet Corn
- Carrots
- Herbs

Row Crop – SDI – Permanent Installation

TORO.

Permanent Infrastructure THE TORO COMPANY

TORO

In-field headworks – 4 zone control valves & reliefs

Primary Headworks - 48"x2" Sand Media Filter & Zone Valves

Valve manifold at primary head works

Engine driven Line Shaft Turbine

PVC Mainline, submain and manifold – shared trench

Primary Headworks - 8" Automatic Screen filter at turbine discharge

TORO. THE TORO COMPANY

Mobile Infrastructure

Skid-mount Sand Media Filter

Riverbank pump site

FlowControl drip tape on layflat manifold

Layflat Supply & layflat manifold; 2 tapes per bed

Trailer-mounted Pump, filter, and fertilizer injection

Successful Micro-Irrigation systems should...

- Increase yield, crop quality, and income
- Reduce inputs water, fertilizer, labor, tillage
- Distribute content uniformly and efficiently

Irrigation Uniformity (EU)

- Uniform application of water and nutrients
- Efficient resource use
- Uniform crops

TORO Irrigation Uniformity (EU) – What does it mean?

**System Details: 0.06"/hr gross application rate x 24 hrs/day = 1.44 inches/day									
* Assuming peak ET = .40"/day x 7 days/week = 2.8"/week									
2.8	1.44	1.30	2.2	1.44	0.86	3.2			
per Week*	inches/day**	inches/day	irrigate	inches/day	inches/day	irrigate			
ET, Inches	rate,	rate	week to	rate,	rate,	week to			
Use at Peak	application	application	Days per	application	application	Days per			
Crop Water	Drip gross	Drip net		Gross	Net				
		90% EU			60% EU				

Challenges to Optimize Uniformity (EU)

Management / Scheduling

Equipment Malfunction

Daniel Howes, Ph.D., P.E.

Challenges to Optimize Uniformity (EU)

Challenges to Optimize Uniformity (EU)

Design (Terrain, Layout, Pipe Sizing)

2" manifold, middle feed 89% EU

3" manifold, end feed 89% EU

Designing for Uniformity THE TORO COMPANY

TORO

• Terrain, layout, pipe-sizing **Emission Device Selection**

Types of Micro-Irrigation Emission Devices

Drip Tape Considerations

Not all drip tape is created equal

Tubing Construction	Emitter Type	Filtration Requirement	Published Flow Information	Other Differentiators	Product Traceability			
 Seamless Seamed – Cast Seamed - Blown 	 Flowpath Discrete Emitter 	 100 mesh 120 mesh 155 mesh 	 GPH @ 8 psi GPH @ 10 psi Q/100 - GPM per 100ft 	 Emitter Exponent Emitter spacing Minimum order quantities 	 Laser Etched Printed NA 			

The Discharge Exponent (X) of an emitter determines the sensitivity of that emitter's flow rate to differences in pressure.

$$\boldsymbol{Q} = \boldsymbol{K} \times \boldsymbol{P}^{\boldsymbol{X}} \boldsymbol{\leftarrow}$$

- Q =flow rate, gph (L/H)
- **P** = operating pressure, psi (kPA)
- **K** = flow coefficient
- **X** = flow exponent
 - X = 1.0 Fully laminar
 - X = 0.0 Fully pressure-compensating

Exponents Through the Years

TORO

THE TORO COMPANY

Product Positioning	x Value	Emitter Type
Pressure Compensating	0.0	Pressure Compensating
BlueLine PC, Drip In PC, Dripnet PC, Inbar, Olympos	0.1	
	0.2	
	0.3	
Turbulent Flow	0.4	Vortex Emitters
Aqua-Traxx, Neptune, T-Tape, Streamline, Chapin, Irriway, Eolos, etc.	0.5	Orifice Flow or Tortuous-Path
	0.6	
1970's	0.7	Long or Spiral Path
	0.8	
1960's	0.9	Microtube
	1.0	Capillary Flow

Product Category Segmentation THE TORO

Advantages vs. PC:

TORO.

- Flexibility to increase system ٠ flow if needed
- Greater control over watering decisions
- Available in thinner walled options
- Closer emitter spacing

Advantages vs. Turbulent Flow

- Improved uniformity on: ٠
 - Longer runs ٠
 - Undulating terrain ٠
- **Better Performance** •

Product Positioning	x Value	Emitter Type
Pressure Compensating	0.0	Pressure Compensating
BlueLine PC, Drip In PC, Dripnet PC, Inbar, Olympos, Ram, Amnon	0.1	
	0.2	
FLOWCONIROL"	0.3	Flow Control
Turbulent Flow	0.4	Vortex Emitters
Aqua-Traxx AZUL, T-Tape, Streamline, Chapin, Irriway, Eolos, etc.	0.5	Orifice Flow or Tortuous-Path
	0.6	
1970's	0.7	Long or Spiral Path
	0.8	
1960's	0.9	Microtube
	1.0	Capillary Flow

How Emitter Exponents Relate

TORO

THE TORO

Design Flexibility

12" 0.22 GPM / 100'

Get the wetting pattern you want!

8" 0.22 GPM / 100'

TORO THE FARY Design Flexibility

Emitter Flow Outlet Part Number Spacing		Outlet		Emitter Flow Rate			Q-100			Emitter	Filtration		
		icing	gph		lph		gpm/100 ft		lph/1 meter		Exponent	Requirement	
		in	cm	@ 8 psi	@ 10 psi	@ 0.55 bar	@ 0.7 bar	@ 8 psi	@ 10 psi	@ 0.55 bar	@ 0.7 bar		(micron)
-	0.07 gph emitter												
8	EAXxx0817	8	20	0.07	0.08	0.26	0.30	0.17	0.20	1.30	1.47	0.55	1/0/1051
Ē	EAXxx1609	16	40	0.07	0.08	0.26	0.30	0.09	0.10	0.65	0.74	0.55	140(105)
No.	0.09 gph emitter												
-	EAXxx0822	8	20	0.09	0.10	0.34	0.38	0.22	0.25	1.66	1.88	0.52	120 (125)
tra	EAXxx1611	16	40	0.09	0.10	0.34	0.38	0.11	0.13	0.83	0.94	0.53	120 (125)
5	0.10 gph emitter												
	EAXxx0825	8	20	0.10	0.11	0.38	0.43	0.25	0.28	1.86	2.11	0.50	120 (125)
Т	EAXxx1613	16	40	0.10	0.11	0.38	0.43	0.13	0.14	0.93	1.05	0.50	12011257
	0.13 gph emitter												
	EAXxx0467	4	10	0.13	0.15	0.51	0.57	0.67	0.75	4.99	5.58		120 (125)'
	EAXxx0644	6	15	0.13	0.15	0.51	0.57	0.44	0.50	3.33	3.72		
	EAXxx0834	8	20	0.13	0.15	0.51	0.57	0.34	0.37	2.50	2.79		
	EAXxx1222	12	30	0.13	0.15	0.51	0.57	0.22	0.25	1.66	1.86	0.50	100 (149)2
	EAXxx1617	16	40	0.13	0.15	0.51	0.57	0.17	0.19	1.25	1.40		
	EAXxx1814	18	45	0.13	0.15	0.51	0.57	0.14	0.17	1.11	1.24		
	EAXxx2411	24	60	0.13	0.15	0.51	0.57	0.11	0.12	0.83	0.93	-	
	0.15 gph emitter												
	EAXxx0650	6	15	0.15	0.17	0.57	0.63	0.50	0.56	3.73	4.17		
	EAXxx1225	12	30	0.15	0.17	0.57	0.6		wy ratas (O	07 0 52 am	L)		100 (149)2
	EAXxx1817	18	45	0.15	0.17	0.57	0.	9 Flow falles $(0.07 - 0.53 \text{ gpn})$					
	0.20 gph emitter							7 Wall thicknesses (4 – 15 mil)					
	EAXxx04100	4	10	0.20	0.22	0.76	0.	5 Tu	bing diame	ters (5/8" –	1 3/8")		
	EAXxx0667	6	15	0.20	0.22	0.76	0.	Emit	ter spacing	g options (4 t	to 36 inches	s)	
	EAXxx0850	8	20	0.20	0.22	0.76	0.6						

Aqua-Traxx[®] Azul

- Available in ultra-low emitter flow rates (0.07, 0.09 and 0.10 gph) as well as low, medium and high emitter flow rates (0.13, 0.15, 0.20, 0.27, 0.34 and 0.53 gph)
- Enhanced clog resistance with filtration requirements as low as 100 mesh lowest for any drip tape in the industry! (0.13, 0.15, 0.20, 0.27 gph)
- Greater filtration area with patent-pending Multi-Stage filters
- Optimized flow passages further resist clogging
- One price for any emitter spacing from 6 24 inches

Aqua-Traxx[®] Azul Sweet Spot[™]

- Longer runs and better uniformity than 5/8" ID drip tape
- Lower system costs resulting from less hose, layflat, connections and labor
- Less expensive than 7/8" ID drip tape
- More environmentally friendly than 7/8" ID drip tape, plus more water savings due to less runoff

FlowControl[®]

- High uniformity on longer runs and hilly terrain
- Retain flexibility to increase or decrease application rate for greater control over watering and scheduling decisions
- Available in a wider range of thicknesses including more affordable 5/8in 6mil and 7/8in 8mil

Flow Control Zone

Dripline/Emitterline

BlueLine® Pressure Compensating

- The Latest Technology the exclusive Toro flow path technology is the result of 30 years of emitter design in combination with the latest in computer aided design.
- More Resistant to Plugging With unique raised inlets, the amount of debris is dramatically reduced at emitter inlet.
- Unmatched Uniformity The Toro flow path technology uses a shark tooth design providing a fully turbulent flow path that is independent from the wall of the tubing providing unmatched uniformity.
- Self-flushing Diaphragm patented new design flushes during operation and shutdown further resisting clogging providing longer life for your system.

BlueLine[®] Classic

- Efficient Emitter Design The unique "shark tooth" emitter flow path design allows uniform application of water and nutrients in demanding field applications, including long lengths of run or undulating terrain
- Accurate Flow Rate Between 5 and 60 psi A wide operating window means less waste and uniform application
- Low Profile Emitter Design Reduced friction loss saves energy and helps ensure uniform application
- Uniform Manufacturing Platform State of the art injection molding technology yields an "industry best"

Blue Stripe[®] Oval and Round Hose

- Large diameter sizes for submain and mainline applications as a cost-effective alternative to PVC
- Smaller diameters can be used in lateral run applications on permanent crops
- When pressurized Oval Hose becomes round just like standard Blue Stripe round hose offers freight savings
 of up to 50%
- The unique Oval configuration allows you to reduce storage space
- Available in a wide range of diameters, wall thicknesses, coil lengths and working pressures.
- Minimum 2% carbon black added for protection
- Also available in white, ideal for nursery and greenhouse irrigation systems

Blue Stripe[®] Round Hose

- Available in a wide range of diameters, wall thicknesses, coil lengths and working pressures.
- Minimum 2% carbon black added for protection
- Also available in white, ideal for nursery and greenhouse irrigation systems

TORO.

THE TORO COMPANY

Supporting Products

THE TORO COMPANY