# Using Blue Dye Tests to Optimize Your Drip Management

**Bob Hochmuth** 

**Regional Extension Agent- Vegetable Crops** 

North Florida Research and Education Center- Suwannee Valley



Live Oak, Florida





### OPTIMIZING WATER MANAGEMENT IN DRIP IRRIGATION SYSTEMS

- Know root zone of the crop
- Know the soil water-holding capacity
- Drip tape emitter spacing and flow rate
- Placement of drip tape in the bed (center or offset)
- Know crop's stage of growth
- Know crop ET
- Answer: when to start the irrigation system?
- Answer: how long to run the irrigation system



### **IRRIGATION MANAGEMENT- WHY?**

- Conservation of water
- Control movement of soluble nutrients like N and K





### Needed load reductions

| Area          | Required reduction to meet TMDL (lb-N/yr) |
|---------------|-------------------------------------------|
| Lower         | 2,442,962                                 |
| Middle        | 1,011,225                                 |
| Withlacoochee | 621,748                                   |
| Total         | 4,075,935                                 |

### 20-year reduction plan (lbs-N/yr)

| Years 0-5 | Years 5-10 | Years 10-15 | Total nitrogen reduction |
|-----------|------------|-------------|--------------------------|
| 30%       | 50%        | 20%         | 100%                     |
| 1,222,781 | 2,037,968  | 815,187     | 4,075,935                |

## BLUE DYE TESTS PROVIDE THE OPPORTUNITY TO "SEE" REAL DATA









# Soil texture influences permeability and infiltration

#### ► TABLE 2.7 | SOIL PERMEABILITY CHART

THESE ARE NORMAL VALUES FOR NON-COMPACTED SOILS, SUCH AS IN GRASSLAND SITUATIONS

| TEXTURE CLASS     | TEXTURE                                            | PERMEABILITY RATE                      | PERMEABILITY CLASS  |
|-------------------|----------------------------------------------------|----------------------------------------|---------------------|
| Coarse            | gravel, coarse sand<br>sand, loamy sand            | > 20 inches/hour<br>6 – 20 inches/hour | very rapid<br>rapid |
| Moderately Coarse | coarse sandy loam<br>sandy loam<br>fine sandy loam | 2 – 6 inches/hour                      | moderately rapid    |
| Medium            | very fine sandy loam<br>loam<br>silt loam<br>silt  | 0.60 – 2 inches/hour                   | moderate            |
| Moderately fine   | clay loam<br>sandy clay loam<br>silty clay loam    | 0.20 – 0.60 inches/hour                | moderately slow     |
| Fine              | sandy clay<br>silty clay<br>clay (<60%)            | 0.06 – 0.20 inches/hour                | slow                |
| Very fine         | clay (>60%)<br>clay pan                            | < 0.06 inches/hour                     | very slow           |

#### FIGURE 2.5 | MOVEMENT OF WATER THROUGH SANDY AND CLAY SOILS





### Lateral Water Movement-Approximately 7 inches in Sands

Man

1 1 1 1

1

-











Dye demonstration, UF Live Oak Center, E. Simonne and B. Hochmuth



Spacing affected pattern, but flow rate/ volume did not. UF and Clemson research suggest 12-inch spacing is optimum in sandy soils.



DRIP TAPE BED PLACEMENT-CENTER IS PREFERRED FROM A SOIL/WATER STANDPOINT. PLACE FERTILIZER IN WETTED ZONE









150 IbN/ac Controlled irrigation 75 lbN/ac 2h fixed irrigation 75 IbN/ac Controlled irrigation

R

150 IbN/ac 2h fixed irrigation

# Blue dye tests: Overhead irrigation













# LESSONS LEARNED FROM IRRIGATION AND BLUE DYE TRIALS

- Early Season (first 4 wks)
  - greatest risk of leaching
  - ✤ irrigation was generally reduced by 50%
- Mid Season
  - Irrigation sensors "caught" rapid increase in water demand (late April early May)
- Late Season
  - Very difficult to over irrigate
  - Lowest risk of leaching
- Single irrigation events in sands should be no longer than 1½ hours
- "Blue Dye Don't Lie"
- Videos available at <u>http://vfd.ifas.ufl.edu</u>



# Blue Dye "Don't" Lie

# THANK YOU

# **Bob Hochmuth**

Regional Extension Agent,

Assistant Center Director

UF/IFAS NFREC-Suwannee Valley

bobhoch@ufl.edu



