Irrigation Design Considerations

- To meet peak crop demand (~2.5 inches per gpm/acre. with a pumping capacity of approximately 6-7 week) an irrigation system should be designed
- A pump covering 200 acres would require ~1400 gpm!!
- GPM =Frequency (Days) X Hours 453 X AC X Depth
- acreages or systems. Don't over demand a well with additional

Peak Water Denne	
Water Donn	,
Domes	
-	
Print	
RT	
Crap	

	Cotton	Pennats	Corn
	May 4th	Plant date May 11th	Plant date March 16th
And -			
Ĭ.			
₹			
¥.			
¥.			
3.			
炭。		,	
oct -			

Real World Scenario

1. Original pivot covers 110 acres. Well flow is 600 gpm. Two years later producer decides to add a windshield wiper pivot covering 25 acres, utilizing a dry land corner on the outer edge of the original pivot. The underground pipe connecting the well to the additional pivot is sized correctly. Pivots are designed and nozzled to run 600 gpm each.

n 600 gpm ead	:h.	
	igh water flow to put out ot, what is the available v	t a minimum of 2 inches per week if water in gpm per acre?
Yes or No		
Available gpa	in this final scenario _	4.4 gpa
What options	s can be done to help dea	al with the shortage if there is one?
1. <u>5</u> p	lit crops with com	in the rotation
2A	dd another well	
How many gr week?	om would be needed in t	his scenario to apply 2.5 inches per
	910 gpm	
	31	
		his scenario to apply 2.5 inches per restrictions occurring 4 hrs. per day
	10.00	
	1,040 gpm	

Calculations

600 gpm = 135 ac = 4,4 gpa.

152,887,5

453 x 135 x 2.5"

GPM = 453 X AC X Depth = 910 gpm Frequency (Days) x Hrs

7 x 24

168

152,887.5

453 x 135 x 2.5"

453 x AC X Depth = 1,040 gpm GPM =

Frequency x his.

7 X2DK

M-F Runs system for 20 hrs/day

S-S Runs system for 24 hrs/day

24 hrs 20 hrs

x 5 days X Z days

100 hrs ran 48 hrs ran

100

148 to hal his for the week

- 7 days

21.1 hrs Iday aug. run time.